Mark Swanson • GES 392 • Spring 2010 • Prof. Mihir SERVICE AREA ANALYSIS FOR FIRE STATIONS IN EVANSTON, ILLINOIS

Introduction

- Service Area Analysis can be used to calculate travel times along a network from one or more service locations
- Common application: response times for fire trucks and other emergency vehicles

Service Area Considerations

- What types of services are delivered by the fire department?
- What is a reasonable travel time for the community?
- What is the size of the area being served and the type and amount of resources available?
- What level of risk is the community willing to accept?

Fire and Response Time Standards

- Fire reaches critical stage ("flashover") in about 8 to 10 minutes
- National Fire Protection Association (NFPA) recommends that the first fire engine reaches a fire within 6 minutes
- Total response time
 - = Dispatch time + turnout time + travel time
 - = 1 minute + 1 minute + 4 minutes

Calculating Response Times in ArcGIS

- Total response time
 - = Dispatch time + turnout time + travel time
 - = 1 minute + 1 minute + X
- "Response Time" in my ArcGIS maps refers specifically to travel time (X)

Evanston, Illinois

General Information

- Population: 74,239 (2000 Census)
- Area: 7.8 sq. miles
- Miles of Streets: 147
- Miles of Alleys: 76
- Fire Protection
 - Number of Firefighters: 107
 - Number of Stations: 5
 - Responses in 2006: 8,099 (3,364 Fire + 4,735 EMS)

The Shapefile Data

- 1. Obtain TIGER/Line shapefiles for Illinois, Cook County, and county subdivisions
 - Select Evanston area
 - Remove non-road "edges" (railroads, "El" tracks, rivers, shorelines, etc.)
 - Prepare a cost field
- 2. Obtain tract and block census data for Cook County
 - Select data for Evanston area
- 3. Create point shapefile for Evanston fire station locations

The "Travel Time" Cost Field

Travel Time = length / (speed limit * 5280 / 60)

FULLNAME	length (feet)	speed limit (mph	travel time (min)	S
Alley	110	15	0.083	32
Wesley Ave	108	25	0.049	32
Greenleaf St	309	25	0.141	32
Alley	435	15	0.33	32
Alley	140	15	0.106	32
Emerson St	204	25	0.093	32
Alley	206	15	0.156	32
Alley	209	5	0.158	32
Church St	450	25	0.205	32
Church St	205	25	0.093	32
Davis St	198	25	0.08	32

Attributes of evanston_edges_export

Creating a Network Dataset (in ArcCatalog)

- 1. Create a Personal Geodatabase
- 2. Create Feature Dataset
- 3. Import street data from TIGER/Line shapefile
- 4. Import fire station(s)
- 5. Create a Network Dataset

Name	Туре
HypotheticalNetwork_ND	Personal Geodatabase Network Dataset
HypotheticalNetwork_ND_Junctions	Personal Geodatabase Feature Class
🖸 One_Station_hypo	Personal Geodatabase Feature Class
🗄 streets_hyp	Personal Geodatabase Feature Class

1. Import the Network Dataset and related files

- 2. Start Network Analyst extension
- 3. Create a new Service Area

4. Load Locations (the fire stations)

d Location	5				?
ad From:	Fire_Stati	ons point layers			
rt Field: .ocation Analy:	sis Properties			ľ	
Property	F	ield		Default Value	
Name CurbApproach Attr_Minutes Breaks_Minute	h es	lame		Either side of vehicle 0.	
ocation Positic Use <u>G</u> eome Search <u>T</u> ol	on	5000	Meters		
C Use <u>N</u> etwor	rk Location Field	ls			
Property SourceID SourceOI PosAlong SideOfEd	D ge	Field			

 Enter desired default breaks for travel time ("response time") in the Layer Properties dialog

Layer Properties			
Line Generation General Layers	Accumulation Source Analysi	Network Locations sis Settings Polygon Gener	ration
Settings Impedance: Min Default Breaks: 1, 2 Direction:	utes (Minutes)	Restrictions □ ^{oneway} chose breaks 6, and 8 mi	of 1, 2, 4, inutes
Allow <u>U</u> -Turns: Eve Ignore In <u>v</u> alid Locations	rywhere		
		OK Cancel	Apply

6. Adjust polygon properties (overlapping, etc.) in the Layer Properties dialog

7. Solve the Network!

Other Factors to Consider for Fire Station Service Areas

- Response time information is just one aspect of a service area
- Other factors we might consider to fully understand a service area:
 - Population statistics
 - Number of fire/emergency responses
 - Staff and equipment availability

Implications for Service Areas

- Increases in response time could be used to justify increases in staff or equipment
- Decreases in response time might be used to justify staff cuts or even the elimination of a station
- If staff are cut, the trade off would be longer response times, so any staff reductions would be controversial

Conclusion

- Service area analysis is a valuable tool for calculating ideal response times and station locations
- Actual response times should be logged and monitored over time to see if they vary from the ideal response times in the original plan
- Decisions about staffing and equipping fire stations can be based on response time data, but other factors should be considered (e.g., population density and distribution, community needs, neighboring services)

Sources

- Oity of Evanston. 2010. <u>http://www.cityofevanston.org/</u>
- Obstantion Decline of Fire Response," Boston Globe. Jan. 25, 2005.
- ESRI. 2007. "GIS for Fire Station Locations and Response Protocol." Redlands, California: ESRI.
- FireBureau. 2010. <u>http://www.firebureau.com/</u>
- Park, Katie. 2010. "City, Northwestern offer incentives for completing 2010 census forms." *The Daily Northwestern*. March 30, 2010.
- U.S. Census Bureau. 2010. <u>http://www.census.gov</u>